Generation of chromioenamines by reduction of *O*-acetyloximes with chromium(II) and their application[†]

Kazuhiko Takai,* Noriko Katsura and Yuji Kunisada

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700-8530, Japan. E-mail: ktakai@cc.okayama-u.ac.jp

Received (in Cambridge, UK) 19th June 2001, Accepted 24th July 2001 First published as an Advance Article on the web 13th August 2001

Chromioenamines can be generated by treatment of *O*-acetyloximes with chromium(II) *via* two steps of one-electron reduction and successive isomerization, and the species react with aldehydes to give γ -amino alcohols after reduction with LiAlH₄.

Treatment of *O*-acetyloximes **1** with low valent metals such as $Cr(\pi)$ and $Ti(\pi)$ under aqueous conditions is a mild deoximation procedure.¹ The process includes the reductive cleavage of N–O bonds leading to *N*-metal imines **3**² *via* iminyl radicals **2**,³ and the hydrolysis of the formed imines to obtain ketones [eqn. (1)].

In order to examine the utilization of the formed reactive species **2** or **3** for carbon–carbon formation, we conducted the chromium(π)-mediated deoximation in aprotic solvents.⁴

The *O*-acetyloxime **4** was treated with 2 equiv. of chromium(π) chloride in the presence of 10 equiv. of methyl acrylate to give the corresponding deoximated ketone **5** in 88% yield after hydrolysis [eqn. (2)]. Nitrogen-containing five-membered

ring compounds derived *via* intramolecular radical cyclization were not observed,³ and no coupling product between **4** and the acrylate was obtained. When the amount of chromium(II) chloride was reduced to 1 equiv. of the oxime **4**, the ketone **5** was obtained in 44% yield and **4** was recovered in 44% yield. These results suggest that the second one-electron reduction of the iminyl radical **2** to the *N*-chromium imine **3** proceeds faster than the first reduction of **1** to **2**.

Trapping of the formed *N*-chromium imine **3** was examined. Although the reduction of the cyclohexanone *O*-acetyloxime **6** with $CrCl_2$ in the presence of Me₃SiCl resulted only in deoximation leading to cyclohexanone, the reduction in the presence of the benzoyl chloride gave **7** in 70% yield along with benzamide in 8% yield [eqn. (3)].^{1b} The expected *N*-acyl imine

† Electronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b1/b105357b/

derived from N-chromium imine **3** was not obtained, and instead a chromioenamine was trapped as **7**.

Thus, carbon–carbon bond formation with this chromioenamine⁵ was investigated in the presence of an aldehyde in the aprotic solvent. Treatment of a mixture of acetone *O*acetyloxime (**8**, 2 equiv.) and benzaldehyde with CrCl₂ (8 equiv.) in THF at 25 °C for 24 h followed by hydrolysis with water gave 4-phenyl-4-hydroxybutan-2-one (**9**) in 23% yield. The quenching procedure affected the yields considerably, probably due to the strong chelation of the adducts to chromium(III). The yield was improved to 88% by quenching with aqueous NaF solution (Table 1 run 2).^{6–8} Although the reaction proceeded more slowly in the case of aliphatic aldehydes, addition of a catalytic amount of NiCl₂ accelerated the reaction rate and improved the yields.⁹

A possible mechanism is shown in Scheme 1. One electron reduction of an O-acetyloxime with chromium(II) gives the

Table 1 Aldol reactions between O-acetyloximes and aldehydes with chromium($\!\!\!\mathrm{II})^a$

R ^{1/}	N R ²	кс + R ³ CHO		l _{2:} cat. NiCl ₂ , THF °C, 24 h NaF	- R ^{1/}	$ \begin{array}{c} O OH \\ \downarrow \downarrow R^3 \\ R^2 \end{array} $
Run	\mathbb{R}^1	R	2	R ³	Yield (%	$(b)^b$ syn-anti ^c
1 2 3 4 5 6	Me	H 8 8 8 -(CH ₂) ₄ -(6 6	6 (8)	Ph Ph $n-C_8H_{17}$ $c-C_6H_{11}$ Ph Ph(CH ₂) ₂	84 ^d (9) 88 ^e 67 74 81 ^{ef} 54 ^e	 36:64 6:94

^{*a*} Reaction conditions as in typical procedure (ESI) unless otherwise stated. ^{*b*} Isolated yields. ^{*c*} Isomer ratios were determined by isolation and/or NMR. ^{*d*} The reaction was completed in 8 h. ^{*e*} The reaction was conducted without addition of NiCl₂. ^{*f*} 8 mol of CrCl₂ was used per mol of benzaldehyde.

Scheme 1 A possible mechanism for the coupling reaction.

imine radical 2,³ which is then subjected to the second one electron reduction to give 3. The imine 3 is isomerized to chromioenamine 10,^{1d,10} and the chromioenamine reacts with an aldehyde to give 11.¹¹ Hydrolysis of 11 gives the aldol adduct 12. Metalloenamines are usually prepared by deprotonation of imine derivatives with strong bases,⁵ however, the procedure does not require such bases. Attempts to reduce the amount of chromium(II) with manganese and Me₃SiCl resulted in deoximation probably due to the fast trapping of the chromium imine 3 or the chromioenamine 10 with Me₃SiCl.¹²

When *anti*- and *syn*-4 were employed in the reaction, almost the same product distributions were observed [eqn. (4)]. The

major product was an aldol adduct **14** at the less hindered carbon. This result supports the proposed Scheme 1, in which the two reactions involve the same iminyl radical as the intermediate.

In order to utilize the nitrogen-containing adduct **11**, reduction of **11** leading to a γ -amino alcohol **13** was examined.¹³ A mixture obtained from **8** and benzaldehyde was treated with LiAlH₄ (10 equiv.) at -78 °C, and the temperature of the mixture was gradually raised to 0 °C. Quenching of the mixture with alkaline NaF solution followed by acetylation gave the acetylated γ -amino alcohol **16** in 79% yield [eqn. (5)].^{14,15} The yield was increased by addition of a catalytic

amount of NiCl₂. The results of the preparation of γ -amino alcohols from *O*-acetyloximes and aldehydes with CrCl₂ and NiCl₂ are summarized in Table 2.

In conclusion, chromioenamines are generated by treatment of *O*-acetyloximes with chromium(π) *via* sequential reduction and isomerization. These react with aldehydes to obtain γ amino alcohols after reduction with LiAIH₄. The reaction proceeds under mild conditions and does not require strong bases such as LDA.

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Table 2 Preparation of γ -amino alcohols from *O*-acetyloximes and aldehydes^{*a*}

N 	√OAc + R ² CHO	i CrCl ₂ , cat. NiCl ₂ , T 25 °C, 24 h ii LiAlH ₄ , −78 → 0 °C	A		
	T R CHU	iii NaF, aq. NaOH iv Ac ₂ O, DMAP, pyri			
Run	\mathbb{R}^1	R ²	Yield $(\%)^b$	syn–anti ^c	
1	Me (8)	Ph	86 (16)	70:30	
2	8	Ph	79 ^d	82:18	
3	8	$Ph(CH_2)_2$	65	69:31	
4	8	c-C ₆ H ₁₁	71	69:31	
5	Ph (17)	Ph	88	42:58	
6	17	$Ph(CH_2)_2$	70	53:47	
7	17	c-C ₆ H ₁₁	71	54:46	

^a Reaction conditions as in typical procedure (ESI) unless otherwise stated.
 ^b Isolated yields. ^c Isomer ratios were determined by isolation and/or NMR.
 ^d The reaction was conducted without addition of NiCl₂.

Notes and references

- (a) Cr: E. J. Corey and J. E. Richman, J. Am. Chem. Soc., 1970, 92, 5276; (b) R. B. Boar, J. F. McGhie, M. Robinson, D. H. R. Barton, D. Horwell and R. V. Stick, J. Chem. Soc., Perkin Trans. 1, 1975, 1237; (c) Ti: G. H. Timms and E. Wildsmith, Tetrahedron Lett., 1971, 195; (d) D. H. R. Barton and S. Z. Zard, J. Chem. Soc., Perkin Trans. 1, 1985, 2191.
- 2 H. Tsutsui and K. Narasaka, Chem. Lett., 1999, 45.
- 3 Ni: J. Boivin, A.-M. Schiano, S. Z. Zard and H. Zhang, *Tetrahedron Lett.*, 1999, **40**, 4531; J. Boivin, E. Fouquet and S. Z. Zard, *Tetrahedron Lett.*, 1990, **31**, 3545.
- 4 We thank Mr Shigeki Nakatsukasa of Kyoto University for conducting an initial investigation of chromioenamines.
- 5 For metalloenamines, see: S. F. Martin, *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 2, ch. 1.16, p. 475.
- 6 The yield was improved to 92% when the mixture was quenched with aq. NaF solution for 48 h.
- 7 Among the oxime derivatives examined, *O*-acetyl gave the best result. Results with the other oxime derivatives are as follows: *O*-benzoyloxime, 58%; *O*-mesyloxime, 75%; *O*-tosyloxime, 47%; *O*-trimethylsilyloxime, 12%.
- 8 Although the amounts of *O*-acetyloxime and chromium(II) chloride can be reduced to 1.2 and 3.6 equiv., respectively, without affecting the yield, the couplings required longer reaction times.
- 9 (a) K. Takai, M. Tagashira, T. Kuroda, K. Oshima, K. Utimoto and H. Nozaki, *J. Am. Chem. Soc.*, 1986, **108**, 6048; (b) S. Py, C. W. Harwig, S. Banerjee, D. L. Brown and A. G. Fallis, *Tetrahedron Lett.*, 1998, **39**, 6139.
- 10 (a) J. V. Braun and W. Rudolph, *Ber.*, 1934, **67B**, 269; (b) For reverse isomerization, see: K. A. Miller, T. W. Watson, J. E. Bender IV, M. M. Banaszak-Hall and J. F. Kampf, *J. Am. Chem. Soc.*, 2001, **123**, 982.
- 11 J.-E. Dubois, G. Axiotis and E. Bertounesque, *Tetrahedron Lett.*, 1985, 26, 4371; L. Wessjohann and T. Gabriel, *J. Org. Chem.*, 1997, 62, 3772.
- 12 A. Fürstner and N. Shi, J. Am. Chem. Soc., 1996, 118, 12349.
- 13 K. Narasaka, Y. Ukaji and S. Yamazaki, *Bull. Chem. Soc. Jpn.*, 1986, **59**, 525.
- 14 Because chromium(III) salts can be reduced with LiAlH₄, an excess amount of the hydride source was required to complete the reduction. See: Y. Okude, S. Hirano, T. Hiyama and H. Nozaki, *J. Am. Chem. Soc.*, 1977, **99**, 3179.
- 15 The following reducing agents were examined: i-Bu₂AlH (51% yield, syn-anti = 72:28), Na(MeOCH₂CH₂O)₃AlH (10%, 33:67); LiEt₃BH (10%, 68:32), Li(sec-Bu)₃BH (35%, 63:37).