Generation of chromioenamines by reduction of *O***-acetyloximes with chromium(II) and their application†**

Kazuhiko Takai,* Noriko Katsura and Yuji Kunisada

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700-8530, Japan. E-mail: ktakai@cc.okayama-u.ac.jp

Received (in Cambridge, UK) 19th June 2001, Accepted 24th July 2001 First published as an Advance Article on the web 13th August 2001

Chromioenamines can be generated by treatment of *O***acetyloximes with chromium(II)** *via* **two steps of one-electron reduction and successive isomerization, and the species react** with aldehydes to give γ-amino alcohols after reduction with **LiAlH4.**

Treatment of *O*-acetyloximes **1** with low valent metals such as $Cr(I)$ and $Ti(III)$ under aqueous conditions is a mild deoximation procedure.1 The process includes the reductive cleavage of N–O bonds leading to *N*-metal imines **3**² *via* iminyl radicals **2**,3 and the hydrolysis of the formed imines to obtain ketones [eqn. (1)].

$$
\begin{bmatrix}N^{-OAC} \\ Cr^{\parallel}(e) \end{bmatrix} \begin{bmatrix}N^{\bullet} \\ \downarrow \end{bmatrix} \begin{bmatrix}Cr^{\parallel}(e) \\ \downarrow \end{bmatrix} \begin{bmatrix}N^{-Cr^{\parallel\parallel}} \\ \downarrow \end{bmatrix} \begin{bmatrix}H_2O & O \\ \downarrow \end{bmatrix} \begin{bmatrix}1\end{bmatrix}
$$

In order to examine the utilization of the formed reactive species **2** or **3** for carbon–carbon formation, we conducted the $chromium(II)$ -mediated deoximation in aprotic solvents.⁴

The *O*-acetyloxime **4** was treated with 2 equiv. of chrom $ium(II)$ chloride in the presence of 10 equiv. of methyl acrylate to give the corresponding deoximated ketone **5** in 88% yield after hydrolysis [eqn. (2)]. Nitrogen-containing five-membered

ring compounds derived *via* intramolecular radical cyclization were not observed,3 and no coupling product between **4** and the acrylate was obtained. When the amount of chromium (n) chloride was reduced to 1 equiv. of the oxime **4**, the ketone **5** was obtained in 44% yield and **4** was recovered in 44% yield. These results suggest that the second one-electron reduction of the iminyl radical **2** to the *N*-chromium imine **3** proceeds faster than the first reduction of **1** to **2**.

Trapping of the formed *N*-chromium imine **3** was examined. Although the reduction of the cyclohexanone *O*-acetyloxime **6** with CrCl₂ in the presence of Me₃SiCl resulted only in deoximation leading to cyclohexanone, the reduction in the presence of the benzoyl chloride gave **7** in 70% yield along with benzamide in 8% yield [eqn. (3)].1*b* The expected *N*-acyl imine

† Electronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b1/b105357b/

derived from *N*-chromium imine **3** was not obtained, and instead a chromioenamine was trapped as **7**.

Thus, carbon–carbon bond formation with this chromioenamine5 was investigated in the presence of an aldehyde in the aprotic solvent. Treatment of a mixture of acetone *O*acetyloxime $(8, 2)$ equiv.) and benzaldehyde with $CrCl₂ (8)$ equiv.) in THF at 25 °C for 24 h followed by hydrolysis with water gave 4-phenyl-4-hydroxybutan-2-one (**9**) in 23% yield. The quenching procedure affected the yields considerably, probably due to the strong chelation of the adducts to chromium(III). The yield was improved to 88% by quenching with aqueous NaF solution (Table 1 run 2).⁶⁻⁸ Although the reaction proceeded more slowly in the case of aliphatic aldehydes, addition of a catalytic amount of $NiCl₂$ accelerated the reaction rate and improved the yields.⁹

A possible mechanism is shown in Scheme 1. One electron reduction of an O -acetyloxime with chromium (n) gives the

Table 1 Aldol reactions between *O*-acetyloximes and aldehydes with chromium(II)^{*a*}

R^1	OAc $+$ R^2	R^3 CHO ii aq. NaF	i CrCl ₂ , cat. NiCl ₂ , THF 25 °C, 24 h	R	ΟН R^3 R^2
Run	\mathbb{R}^1	R^2	R^3	Yield $(\%)^b$	$syn-antic$
	Me	H(8)	Ph	84^d (9)	
2	8		Ph	88e	
3	8		$n-C_8H_{17}$	67	
4	8		$c - C_6H_{11}$	74	
		$-CH2)4$ - (6)	Ph	81 ^{ef}	36:64
6	6		$Ph(CH_2)_2$	54 ^e	6:94

a Reaction conditions as in typical procedure (ESI) unless otherwise stated. *b* Isolated yields. *c* Isomer ratios were determined by isolation and/or NMR. *d* The reaction was completed in 8 h. *e* The reaction was conducted without addition of NiCl₂. f 8 mol of CrCl₂ was used per mol of benzaldehyde.

Scheme 1 A possible mechanism for the coupling reaction.

imine radical **2**,3 which is then subjected to the second one electron reduction to give **3**. The imine **3** is isomerized to chromioenamine **10**,^{1*d*,10} and the chromioenamine reacts with an aldehyde to give **11**.11 Hydrolysis of **11** gives the aldol adduct **12**. Metalloenamines are usually prepared by deprotonation of imine derivatives with strong bases,⁵ however, the procedure does not require such bases. Attempts to reduce the amount of chromium (n) with manganese and Me₃SiCl resulted in deoximation probably due to the fast trapping of the chromium imine **3** or the chromioenamine **10** with $Me₃SiCl.¹²$

When *anti*- and *syn*-**4** were employed in the reaction, almost the same product distributions were observed [eqn. (4)]. The

major product was an aldol adduct **14** at the less hindered carbon. This result supports the proposed Scheme 1, in which the two reactions involve the same iminyl radical as the intermediate.

In order to utilize the nitrogen-containing adduct **11**, reduction of 11 leading to a γ -amino alcohol 13 was examined.13 A mixture obtained from **8** and benzaldehyde was treated with LiAlH₄ (10 equiv.) at -78 °C, and the temperature of the mixture was gradually raised to 0° C. Quenching of the mixture with alkaline NaF solution followed by acetylation gave the acetylated γ -amino alcohol 16 in 79% yield [eqn. (5)].^{14,15} The yield was increased by addition of a catalytic

amount of NiCl₂. The results of the preparation of γ -amino alcohols from O -acetyloximes and aldehydes with $CrCl₂$ and $NiCl₂$ are summarized in Table 2.

In conclusion, chromioenamines are generated by treatment of *O*-acetyloximes with chromium(II) *via* sequential reduction and isomerization. These react with aldehydes to obtain γ amino alcohols after reduction with LiAlH4. The reaction proceeds under mild conditions and does not require strong bases such as LDA.

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Table 2 Preparation of y-amino alcohols from *O*-acetyloximes and aldehydes*a*

	$N^{\sim OAC}$ R^2 CHO	CrCl ₂ , cat. NiCl ₂ . THF 25 °C. 24 h ii LiAlH ₄ , $-78 \rightarrow 0$ °C		AcNH ОАс		
		iii NaF, aq. NaOH iv Ac ₂ O, DMAP, pyridine, CH ₂ Cl ₂				
Run	R ¹	R ²	Yield $(\%)^b$	$syn-antic$		
	Me(8)	Ph	86 (16)	70:30		
2	8	Ph	79d	82:18		
3	8	$Ph(CH_2)$	65	69:31		
4	8	$c - C_6H_{11}$	71	69:31		
5	Ph(17)	Ph	88	42:58		
6	17	$Ph(CH_2)$	70	53:47		
	17	$c - C_6H_{11}$	71	54:46		

a Reaction conditions as in typical procedure (ESI) unless otherwise stated. *b* Isolated yields. *c* Isomer ratios were determined by isolation and/or NMR. *d* The reaction was conducted without addition of NiCl₂.

Notes and references

- 1 (*a*) Cr: E. J. Corey and J. E. Richman, *J. Am. Chem. Soc.*, 1970, **92**, 5276; (*b*) R. B. Boar, J. F. McGhie, M. Robinson, D. H. R. Barton, D. Horwell and R. V. Stick, *J. Chem. Soc., Perkin Trans. 1*, 1975, 1237; (*c*) Ti: G. H. Timms and E. Wildsmith, *Tetrahedron Lett.*, 1971, 195; (*d*) D. H. R. Barton and S. Z. Zard, *J. Chem. Soc., Perkin Trans. 1*, 1985, 2191.
- 2 H. Tsutsui and K. Narasaka, *Chem. Lett.*, 1999, 45.
- 3 Ni: J. Boivin, A.-M. Schiano, S. Z. Zard and H. Zhang, *Tetrahedron Lett.*, 1999, **40**, 4531; J. Boivin, E. Fouquet and S. Z. Zard, *Tetrahedron Lett.*, 1990, **31**, 3545.
- 4 We thank Mr Shigeki Nakatsukasa of Kyoto University for conducting an initial investigation of chromioenamines.
- 5 For metalloenamines, see: S. F. Martin, *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 2, ch. 1.16, p. 475.
- 6 The yield was improved to 92% when the mixture was quenched with aq. NaF solution for 48 h.
- 7 Among the oxime derivatives examined, *O*-acetyl gave the best result. Results with the other oxime derivatives are as follows: benzoyloxime, 58%; *O*-mesyloxime, 75%; *O*-tosyloxime, 47%; *O*trimethylsilyloxime, 12%.
- 8 Although the amounts of *O*-acetyloxime and chromium(II) chloride can be reduced to 1.2 and 3.6 equiv., respectively, without affecting the yield, the couplings required longer reaction times.
- 9 (*a*) K. Takai, M. Tagashira, T. Kuroda, K. Oshima, K. Utimoto and H. Nozaki, *J. Am. Chem. Soc.*, 1986, **108**, 6048; (*b*) S. Py, C. W. Harwig, S. Banerjee, D. L. Brown and A. G. Fallis, *Tetrahedron Lett.*, 1998, **39**, 6139.
- 10 (*a*) J. V. Braun and W. Rudolph, *Ber.*, 1934, **67B**, 269; (*b*) For reverse isomerization, see: K. A. Miller, T. W. Watson, J. E. Bender IV, M. M. Banaszak-Hall and J. F. Kampf, *J. Am. Chem. Soc.*, 2001, **123**, 982.
- 11 J.-E. Dubois, G. Axiotis and E. Bertounesque, *Tetrahedron Lett.*, 1985, **26**, 4371; L. Wessjohann and T. Gabriel, *J. Org. Chem.*, 1997, **62**, 3772.
- 12 A. Fürstner and N. Shi, *J. Am. Chem. Soc.*, 1996, **118**, 12349.
- 13 K. Narasaka, Y. Ukaji and S. Yamazaki, *Bull. Chem. Soc. Jpn.*, 1986, **59**, 525.
- 14 Because chromium (m) salts can be reduced with LiAlH₄, an excess amount of the hydride source was required to complete the reduction. See: Y. Okude, S. Hirano, T. Hiyama and H. Nozaki, *J. Am. Chem. Soc.*, 1977, **99**, 3179.
- 15 The following reducing agents were examined: i-Bu₂AlH (51% yield, $syn–anti = 72:28$), Na(MeOCH₂CH₂O)₃AlH (10%, 33:67); LiEt₃BH (10%, 68+32), Li(*sec*-Bu)3BH (35%, 63+37).